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1 January 10, 2017

1.1 Introduction

Definition. Engineering is a tool to efficiently produce conditions or things that
are different from the state in which they naturally exist. It is a link between science
and humanity.

For this course, the states of matter concerned include liquid, solid, gas, and
vapour. Matter can exist in one or more phases, depending on the conditions.
Lowering the temperature of water below 0◦ for instance, will turn it into ice. The
properties of ice are thus different from those of water. For instance, its viscosity,
density, conductivity, and strength are all affected. We note then, that conditions
change the state of the material, which then affect the properties of the material.
These properties affect engineering calculations.

We need quantitative ways to evaluate properties in each state. We use a va-
riety of methods to accomplish this, including through measurement, prediction
(empirically, based on previous measurements, or theoretically, based on funda-
mental understanding),

2 January 12, 2017

2.1 Scales of Magnitude

We can look at problems at multiple scales. For instance, we can look at bulk
properties, such as pressure and temperature, or at the molecular level, such as the
speed and mass of molecules.

2.2 Fundamental and Derived Quantities

Some common fundamental quantities or dimensions include mass, time, and
length. From these fundamental dimension, we can define many other quantities.
For instance, velocity is equal to length divided by time. Other derived quantities
include pressure, force, and energy. We also need additional fundamental quanti-
ties to define thermodynamic quantities. They are temperature, current, and
light intensity. We note that any quantity A, can be expressed in terms of the
fundamentals:

[A] = f ([m], [L], [t]) ,

where the square brackets represent the dimensions of each respective quantity. In
other words,

[A] = [m]α[L]β[t]γ

means that A has dimensions so long as at least one of α, β, γ is not zero. If this is
the case, then A will have units. Furthermore, the magnitude of A depends on how
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m, L, and t are specified. For instance, if our unit of time is measured in seconds,
this would affect the magnitude of A compared to if time was measured in hours.

If α = β = γ = 0, then we note that [A] = 1, meaning that A is dimensionless.
To be dimensionless means that the quantity does not depend on how m, L, and t
are specified. For instance, the ratio of the length of a certain pen to the length of
a certain table does not change regardless of the units we use to measure.

Example. We can use the three basic dimensions to represent many quantities. Let
us consider velocity,

u =
l

t
,

where u is velocity, l is length, and t is time. The dimensions become,

[u] = [l]1[t]−1.

We now note that in this case, α = 0, β = 1, and γ = −1.

Example. The dimensions of work (energy) can be expressed as

[W ] = [F ][L],

where W is work, F is the force, and l is the distance through which the force is
exerted. However, F is not a fundamental quantity, so we continue

[F ] = [m][a],

where m is mass and a is acceleration. We further simplify acceleration into its
fundamental quantities to obtain

[a] =
[L]

[t]2
.

We now substitute the values back into the expression for work to obtain

[W ] = [m][L]2[t]−2.

That is, α = 1, β = 2, and γ = −2. Using the SI units for mass, length, and time,
we obtain work in the units kgm

2

s2
.

Remark. In this class, we will use mass, length, time, temperature, and quantity
(moles), expressed as [m], [L], [t], [T ], and [n] respectively.

Units are the way dimensions are expressed. Some derived units are given spe-
cial names. The SI units are kilograms (kg) for mass, meters (m) for length,
seconds (s) for time, Amperes (A) for electric current, Kelvins (K) for tempera-
ture, moles (mol) for the amount of a substance, and Candela (Cd) for luminous
intensity.

Remark. All terms in an equation must have the same dimensions.
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2.3 Conservation Principles

We are concerned with the conservation of mass, energy, and momentum. We first
formulate Newton’s Laws of Motion:

• A body at rest or in motion will remain in that state unless acted upon by a
force (Inertia Principle).

• The acceleration obtained during displacement of a body is proportional to,
and has the same direction as, the force performing the action and the pro-
portionality constant is the inverse of the mass (Action-Displacement),

F = ma.

• The net force exerted by the surroundings on a body is equal in magnitude
but opposite in direction to the applied for (Action-Reaction).

We now consider the conservation principles with these laws in mind:

1. Conservation of mass states that in a confined volume (defined space), the
rate of input plus the rate of generation equals the rate of output plus the rate
of accumulation. This equation is valid for the total mass, as well as for the
individual species in the mixture. If there is no chemical reaction, then the
generation term is 0. If the system is in steady-state, then the accumulation
term is 0. For instance, in the case of incoming water from a tap, we can do a
balance on water. In the case of incoming salt water from a tap, we can do a
balance on water, on salt, and on the total mass. We note that it is important
to consider the extent of the control volume.

2. Conservation of energy states that energy cannot be created or destroyed,
but can be converted from one kind to another. The form of the equation is the
same as that of conservation of mass. We make similar conclusions regarding
control volume, steady state, and the presence of chemical reactions.

3. Conservation of momentum states that

m1 ~v1 +m2 ~v2 = C,

where C is a constant.

3 January 17, 2017

3.1 Intensive Variables

We make use of the following vocabulary:
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• Intensive properties do not depend on the amount of mass and are size
independent. For example, temperature, pressure, density, and specific volume
are intensive properties.

• Extensive properties on the other hand, are size dependent. For example,
volume and mass are extensive variables.

• Phase refers to a part of a system which is physically and chemically uniform.

• Equilibrium for a single phase, refers to uniformity of intensive properties.
Equilibrium in two phases requires thermal equilibrium such that

T1 = T2,

mechanical equilibrium such that

P1 = P2,

and chemical potential equilibrium where the escaping tendency of the first
substance is equal to the escaping tendency of the second substance.

Systems in equilibrium must follow the phase rule, which states that

F = 2 + C − P,

where F is the degrees of freedom (the number of intensive variables that can be
set arbitrarily), C is the number of components of pure components (usually one),
and P is the number of phases. Thus, when we have P = 1, our degrees of freedom
becomes 2. With 2 phases in the system, we are limited to 1 degree of freedom. When
our degrees of freedom become 0, this means that we cannot choose the intensive
properties. For example, the triple point of water refers to the fixed temperature
and pressure at which all three states exist at the same time.

The equation of state claims that the dependent equations of the intensive
variables (such as density) of a pure substance when it is in a single phase is given
by

ρ = f(T, P ).

3.2 Phase Diagrams

A pressure-termperature diagram (PT diagram) is a plot of pressure P against
temperature T that shows the conditions at which the substance exists as a solid,
liquid, or gas. These diagrams are usually generated experimentally. We can use an
evacuated cylinder to contain the substance to be tested, then use a variable volume
through a piston-cylinder arrangement, to vary T and P . This allows us to determine
the values at which each state exists. Given a pressure and temperature diagram,
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we can split the diagram into phase regions where each state is encountered. The
OA line represents solid and vapour, the AC line represents liquid and vapour, the
AB line represents solid and liquid, the point A represents the triple point, and the
point C represents the critical point. On a PT diagram, an isobar is a line at a
constant pressure, while an isotherm is a line at constant temperature.

Remark. At a phase boundary, we encounter a change of state. We can describe
the processes occurring at the phase boundaries as sublimation/deposition, melt-
ing/freezing, and vapourization/condensation. During this time, we are left with
one less degree of freedom, since the substance has to convert from one phase to
another entirely before it regains that degree of freedom.

As we move along line AC, temperature is increasing, as is pressure. During
this time, the density of liquid decreases, while the temperature of vapour increases.
At point C, we have Pliquid = Pvapour, so we have one phase at the critical point.
Thus, PC is the critical pressure, while TC is the critical temperature. We recall
that along line AC, we have two phases. The vapour-pressure is the pressure
along line AC for a certain temperature. Therefore, vapour-pressure is a function
of temperature,

P vapour = f(T ).

4 January 19, 2017

4.1 Pressure Temperature Diagram

The vapour-pressure line is the line along which there are two phases, either solid
or liquid, along with vapour. The boiling point (also called the bubble point)
are the points along the line at which liquid and vapour are present, whereas the
sublimation point are the points along the line at which solid and vapour are
present. We recall that for any specific temperature, we have one specific vapour
pressure. Moreover, when pressure is

pvapour = 1atm,

we refer to the boiling or sublimation temperature as the normal boiling or subli-
mation temperature respectively.

4.2 Pressure Volume Diagram

In a PV diagram, the triple point becomes a triple line. While the specific volume
on this horizontal line is not kept constant, this line represents an isotherm and
isobar, since the triple point maintains a specific temperature and pressure. The
system specific volume indicates the specific volume of the two two-phase mix-
ture. We now note that melting and the other processes now occur as a region in a
PV diagram. In this conversion, the mass of the solid changes along with the mass
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of the liquid. The density of the solid and liquid does not change, but the density of
the specific volume changes. That is, as we move along the triple line, the specific
volume of the system changes as we convert between states of matter.

Note that if there is a break in the line, this indicates that the temperatures are
not the same along the constant pressure, since the processes of melting/freezing and
vapourization/condensation occur at different temperatures. While these processes
occur at a fixed temperature, this temperature is different for melting/freezing and
vapourization/condensation. It is only at the triple line which connects the volumes
of solid, liquid, and vapour that we have the triple point which occurs over a constant
temperature for all three states of matter.

In a PV diagram, V is the specific volume, given by

V =
m3

kg
=

1

ρ
,

where ρ is density. There exists an isotherm curving from the top, which makes
contact with the critical point at the top of the rounded curve indicating the region
where liquid and vapour exist. A point on the line where solid and vapour exists
on the PT diagram is represented on a PV diagram in the region where solid and
vapour exists as a horizontal line. An isotherm on a PV diagram is represented as a
horizontal line when two phases are present, and represented as a line with negative
slope when only one phase is present. We note that isotherm lines never intersect
one another, since there cannot be more than one temperature given the specific
conditions.

5 January 24, 2017

5.1 Phase Rule

We recall that the phase rule is given by

F + P = C + 2.

C in a non-reactive reaction refers to the individual substances, whereas C in a
reactive system refers to the atomic composition. In this class, we generally assume
that there is no reaction. Phases represented by P in the equation are realized by
physical boundaries, with the composition being the same throughout the phase.
Therefore, we can only ever have 1 phase of gas, since gases mix at equilibrium. For
liquids, we may have more than 1 phase, since liquids may separate and create dis-
tinct layers in equilibrium. F representing degrees of freedom indicates the number
of intensive variables we may set.

We first consider C = 1 and C = 2 systems, where we can consider PT and
PV diagrams. The critical point on a PT diagram denotes the critical temperature,
where any temperature greater than this would result in a gas. We note then the
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difference between a vapour and a gas is that when we increase the pressure of a
gas at a fixed temperature, it does not change into a liquid. We realize that for a
vapour, we can increase the temperature at a fixed temperature to obtain a liquid.

In a PV diagram, a constant P means we are permitted to move horizontally,
a constant V means we are permitted to move vertically, and a common T means
we are permitted to move along the isotherms. For a given point in the region with
liquid and vapour, there is a specific volume Vm, which varies between the specific
volume of the liquid and vapour for that temperature, VL and VV . Vm therefore
varies and approaches either VL or VV depending on its proportion of vapour or
liquid. We therefore note that we have a constant temperature T1 and constant
pressure P1 for all mixtures of liquid and vapour. The bubble point is the point
for a specific temperature when vapour starts to appear when increasing specific
volume, and the dew point is the point for a specific temperature when liquid
starts to appear when decreasing specific volume.

5.2 Lever Rule

On a PV diagram, we can draw the isotherm between the dew and bubble points.
The lever rule can be used to find the relative amounts of phases. Let VL be the
specific volume of liquid, VV be the specific volume of vapour, Vm be the specific
volume of the mixture, x be the mass of the vapour, 1 be the total mass, and 1− x
be the mass of the liquid. We note that

Total Volume = Volume of Liquid + Volume of Vapour.

Since the total mass is defined to be 1, we multiply this by the specific volume to
obtain the volume of each component, to obtain

Vm(1) = VL(1− x) + VV x

Vm = VL − xVL + xVV

Vm − VL = x(VV − VL)

After manipulating the equation, we obtain

x

1
=
Vm − VL
VV − VL

=
mass of vapour

total mass
.

We can similarly define the result for other ratios,

VV − Vm
VV − VL

=
mass of liquid

total mass
,

Vm − VL
VV − Vm

=
mass of vapour

mass of liquid
.

Remark. The lever rule can be applied to the three regions in a PV diagram with
two phases. When asked for the specific volume of the vapour or liquid, we simply
read the value off of the diagram of VV or VL. When asked for the relative amount
of vapour or liquid, then we need to determine the ratios.
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5.3 Composition

Composition is the proportion of the various constituents of a mixture, and results
when C > 1. We can represent these by the following methods:

• Mass fraction of a component j is defined as

wj =
mj∑
mi
,

where mi is the mass of the component i.

• Mole fraction of a component j is defined as

xj =
nj∑
ni
,

where ni is the moles of component i.

• Volume fraction of a component j is defined as

vj =
vj∑
vi
,

where vi is the volume of component i.

Remark. We can only specify C − 1 mole or mass fractions given the number of
components in the mixture is C.

6 January 26, 2017

6.1 Two Component Vapour-Liquid Systems

According to the phase rule, we have for a system with two independent components,

F = 4− P.

Thus, with 1 phase, we can specify 3 degrees of freedom. If we have 2 phases, we can
specify 2 degrees of freedom, and if we have 3 phases, then we can specify 1 degree
of freedom. To study these systems, we fix one intensive variable to study the effect
of changing the others. Usually, we fix pressure to study temperature and the mole
fraction xi. We can use vapour-liquid and liquid-solid diagrams to accomplish this.

For Vapour-liquid systems, the vapour phase will always be homogenous.
That is, we will only see one vapour phase. For liquids, we have 3 different cases:

1. The liquids are completely miscible.

2. The liquids are completely immiscible.

3. The liquids are partially miscible.
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6.1.1 Miscible Systems

Consider the completely miscible liquids of acetone and ethanol at a pressure of
1atm. On a graph of T and xethanol, we note that the mole fraction on the x axis
indicates increasing percentage of ethanol compared to acetone. The graph appears
as a diagonal ellipse with a positive slope. The lower curve is the bubble point curve,
and the upper curve is the dew point curve. We can determine the boiling points
of each substance by looking at the leftmost and rightmost intersection between
vapour and liquid. Since these boiling points occur at 1atm, this is referred to as
the normal boiling point.

At a certain point in the region where both phases exist, we draw a horizontal
line until the line reaches the bubble point curve and dew point curves. We then
read the mole composition at these two points to determine the mole fraction of the
liquids in the liquid and vapour phases respectively. That is, in two phase regions,
the composition of each phase can be read from the dew and bubble point curves.
Therefore, we can consider at a particular temperature T the following mole ratios
of xvapour, xmix, and xliquid, which can be found by reading the horizontal intercept
with the dew point curve, obtaining the value itself, and reading the horizontal
intercept with the bubble point curve. At T , if x < xvapour, then the substance is
entirely vapour. If x > xliquid, then the substance is entirely liquid. Only when x is
between the two values are two phases present, at which point we need to use the
lever rule to determine the relative amounts of phases in the two phase region.

Suppose we let nm be the number of moles of the mixture, nV be the number of
moles of the vapour, and nL be the number of moles of the liquid. Thus,

nm = nV + nL.

nmxm = nV xV + nLxL.

On our diagram, we can obtain all the mole fractions. We can then solve the
equations to get the amount of phases:

nV
nm

=
xL − xm
xL − xV

,

nL
nm

=
xm − xV
xL − xV

.

6.1.2 Miscible Systems with Azeotrope

An azeotrope refers to the point on a Tx diagram for a mixture where the vapour
and liquid have the same composition at equilibrium. That is, on a Tx diagram,
the dew point curve and bubble point curves touch at another point other than at
the ends (the azeotrope). This is the case with benzene and ethanol at 1atm. We
use the lever rule in both two-phase regions to calculate the amounts of the phases.
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Remark. The azeotrope boiling point may be at a greater or lower temperature than
either substance alone. These are referred to as minimum boiling azeotrope and
maximum boiling azeotrope respectively, since the mixture boils at a greater or
lower temperature than either substance.

6.1.3 Immiscible Systems

We can similarly draw a Tx diagram for immiscible systems. This means that we
plot the mole fraction for liquid 1, and not liquid 2. The vapour phase exists at
the top, the vapour along with the second liquid are in the left region, the vapour
along with the first liquid are in the right region, and both liquids are in the bottom
region. We can once again determine the composition of each liquid by the mole
fraction on the x axis, from 0 to 1. That is, the leftmost vertical line indicates only
one substance is present, and the rightmost vertical line indicates only the other
substance is present. The graph looks like a horizontal line with two concave down
curves above, touching at a single point. The boiling points for each substance occur
at the topmost intersection of the curves with the vertical end lines. The horizontal
line is the three phase line. Applying the lever rule, we can perform this on the
regions V + L2, L1 + L2, and V + L1.

6.1.4 Partially Miscible Systems

An example would be the mixture of isobutyl alcohol with water at 1atm. The
Tx diagram is split into 6 regions, starting with vapour on top, followed by vapour
with liquid 1, liquid 1, both liquids, liquid 2, and vapour with liquid 2. Since these
liquids are partially miscible, the L1 and L2 regions indicate that the mixture is rich
in mainly one kind of liquid. The three phase line is once again the horizontal line
that appears on the graph. The lever rule can be applied in all three regions with
V + L1, V + L2, and L1 + L2.

7 February 2, 2017

7.1 Two Component Liquid-Solid Systems

For Liquid-Solid systems, they behave in a similar way to VL systems. We have 3
different cases:

1. The solids are completely miscible.

2. The solids are completely immiscible.

3. The solids are partially miscible.
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7.1.1 Miscible Systems

The Tx diagram for a completely miscible system takes the same form as for a
vapour-liquid system. We now have a liquidus line and a solidus line.

7.1.2 Immiscible Systems

We can consider the benzene-napthalene mixture at a pressure of 1atm. The diagram
takes the form of the diagram from vapour and iiquids. However, since there is never
a mixture of the two types of solids, we have two distinct solids. That is, for a plot of
mole fraction of napthatlene, goes clorckwise from the top we encounter the liquid,
liquid and solid napthalene, both solids, and liquid and solid benzene. The point E
where the curves all meet is known as the eutectic point, and is the mixture with
the lowest freezing point. We note that the freezing point of the eutectic mixture
is lower than the freezing point of the pure components. Suppose we start with
pure benzene as a solvent. When we add naphthalene as a solute, the freezing
point of the mixture lowers to the eutectic point before increasing. Freezing point
depression is the process in which adding a solute to a solvent decreases the freezing
point of the solvent. An example would be adding salt on roads to lower the freezing
temperature of water. We note that the three phase line exists, where SA and SB
are the solid benzene and napthalene respectively. At the eutectic point, SA and SB
are composed entirely of their respective solids (100%), while the liquid is composed
of a portion of each solid.

7.1.3 Partially Miscible Systems

Suppose we have a silver-copper system, plotting the mole fraction of copper. The
shape of the diagram is the same as its vapour-liquid counterpart. Going clockwise
from the top, we have L, L+Sα, Sα, Sα+Sβ, Sβ, and L+Sβ, where Sα is primarily
copper and Sβ is primarily silver. We note that solid copper and solid silver exist
only when their composition is 100%. The melting point of silver and copper are on
the leftmost and rightmost lines respectively. We also have the maximum solubility
temperature of copper and silver at the eutectic temperature on the left and right
respectively. That is, the most X one can add to Y and have the same single
phase as what one started with is referred to as the maximum solubility of X in
Y . Therefore, the maximum solubility of copper in silver is on the left, while the
maximum solubility of silver in copper is on the right. There are also solubility
points at a lower temperature which are usually given.
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8.1 Ideal Gases

Our goal is to establish a PVT relationship. While pressure and temperature are
relatively easy to measure, specific volume is more difficult to measure. We generally
use P and T to find V from

Pv = nRT.

The ideal gas law does not apply to high pressure vapours or liquids. We use
the ideal gas law to understand the bulk properties of the gas. An ideal gas is an
imaginary gas that always obeys simple rules:

• An ideal gas has mass, but the molecules are assumed to have zero volume.

• The molecules are assumed to not exert any forces on neighbour molecules.
That is, there is no attractive or repulsive forces.

• The molecules must be very far apart.

• Substances that behave as an ideal gas are usually at low pressure and high
temperature.

When P << PC and T >> TC , where PC and TC indicate the critical pressure
and temperature respectively, it can be assumed that we are dealing with an ideal
gas. Light gases such as O2, N2, He, and H2 at normal temperature and pressure
behave like an ideal gas. The equation of state for an ideal gas is the relationship
between PVT. We obtain a PVT relationship from experimental observations.

Remark. We can relate V , the specific volume, Vm, the molar volume, and v, the
volume of a gas by converting between them. We are generally given specific volume.

Boyle’s law describes systems at a constant temperature. He found that pres-
sure is inversely proportional to volume,

P ∝ 1

v
.

That is, at any one temperature (isotherm), Pv is constant. On a Pv diagram,
temperature is fixed along inverse lines since

P1v1 = P2v2 = ... = Pnvn = C.

Charles’ Law describes systems at a constant pressure (isobar). He found that
volume is directly proportional to temperature,

v ∝ T.

On a vT diagram, the lines of pressure are indicated by a constant v
T , since

v1

T1
=
v2

T2
= ... =

vn
Tn

= C.

Note that as T → 0, v → 0. At 0K, an ideal gas should occupy zero volume.
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8.2 Ideal Gas EOS

Let us take a fixed mass of ideal gas at P , T , and v. This gas will go through
heating/cooling and compression/expansion to P2, T2, and v2. To analyze these
variables, we consider a PT diagram. By applying Charle’s and Boyle’s laws, we
find that we can solve for an unknown volume given that one of the other variables
is fixed. It is important to note that by applying both of these laws, we find that

Pv

T
= C.

The constant above depends on the mass of the gas and the nature of the gas. We
make use of Avogadro’s law to note that equal numbers of different ideal gases
occupy the same volume at a given pressure and temperature. 1kmol = 6.023 · 1026

molecules. That is, if we start with 1kmol of gas, then v will be Vm, so we obtain

PVm
T

= R,

where R is the universal gas constant. In other words,

PVm = RT.

Since Vm = v
n , this can also be expressed as

Pv = nRT,

where P is the pressure in kPa, Vm is the molar volume in m3/kmol, and T is
temperature in K.

8.3 Universal Gas Constant

All gases approach ideal gas behaviour at low pressures. If we plotted Pv to P , we
will find that different gases converge to the same Pv value as P decreases. That is,

lim
P→0

(
Pv

nT

)
= R.

If we have 1kmol of gas at 0◦C = 273.15K, and 1atm = 101.325kPa, it will occupy
22.414m3. We can use this to find that

R = 8.314
kPa ·m3

kmol ·K
.

In reality, we generally have more than one component in a mixture of ideal
gases. A mixture containing ideal gases will behave like an ideal gas with nT total
moles of c components. We utilize the two main laws which deal with additive
pressure and additive volume.
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Dalton’s law states that the pressure in the mixture is equal to the sum of
the pressures that would be exerted individually in the same volume. That is, for
pressures PA, PB and P with the same volume, we have

PA + PB = P,

nA + nB = nT .

Making use of the above, we note that the total pressure in the mixture in equal to
the sum of the partial pressure of the individual components, so

P =
nART

v
+
nBRT

v
.

We can calculate the mole fraction yi of A and B. Note that Pi is the partial pressure
of component i, while P is the total pressure. We have the following relations

Pi = yiP,∑
Pi = P,∑
yi = 1.0.

Amagat’s law states that the individual volumes within an ideal gas mixture
sum to the total volume. We note the following relations,

vi = yiv,∑
vi = v,∑
yi = 1.0.

9 February 9, 2017

9.1 Ideal Gas Examples

Example. Suppose we have a 0.25m3 tank and a gas mixture comprised of CO2 and
methane. 50% of each on the molar basis fills the tank. At a pressure of 0.70mPa at
a temperature of 48◦C. We add 1kg of oxygen to the mixture while maintaining the
temperature. In the final mixture, find the mole fractions, determine the pressure,
and then find the final molar mass of the mixture.

We start off by considering the tank where v = 0.25m3. Termperature is 48◦C =
321.15K. The pressure expressed in kPa is 700kPa. This contains CO2 and CH4

molecules. The mole fraction of both are equal. We now add 1kg of oxygen. The
volume of the container does not change, not does the temperature. Furthermore,
the moles of CO2 and CH4 do not change after the addition of oxygen. The only
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variables that change are the contents of the tank (since we added 1kg of O2), and
the pressure inside. Before the addition of oxygen, we note that we can solve

n =
Pv

RT

to determine the total number of moles. This is 0.06554kmol in total. Dividing
this by 2 gives the number of kmol of CO2 and CH4. Thus, we know the number
of kmol of CO2 and CH4 after the addition of O2, since the number of moles does
not change. Converting using the molar mass of oxygen, we find that there are
0.03125kmol of O2. Since we now have all the moles of each component, we find
that the mole fractions are yCO2 = yCH4 = 0.338 and yO2 = 0.324.
To find the pressure, we isolate to find

P =
nRT

v
,

where n is the total number of moles. The resulting pressure is P = 1034kPa.
To find the molar mass, we recall that

M =
∑

yiMi,

where yi is the mole fraction. Thus, we can multiply each mole fraction with the
respective molar mass of the component to find that the average mass is M =
(.338(44.1 + 16.09) + .324 · 32)kg/kmol = 30.66kg/mol.

9.2 Kinetic Theory

There are two methods for studying the behaviour of ideal gases. The first is the
Ideal Gas Law, which was based on experiments. The second method is Kinetic
Theory and is based on theory. The need for kinetic theory arises due to the need
in engineering to evaluate parameters such as viscosity, conductivity, and other
properties of gases that are not covered by the Ideal Gas Law. We assume the
following:

• The volume of the molecules are small in comparison to the volume of the gas.

• Molecules are inert rigid spheres with no intermolecular forces.

• Molecules move freely in all directions, so elastic collisions will take place
(kinetic energy and momentum are conserved).

9.2.1 Relationship for Pressure of a Gas

We look at the number, mass, and velocity of the molecules in the gas in order to
arrive at a pressure. We start with a single molecule of an ideal gas in a cube shaped
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container with side length a. Let c denote the speed of the molecule contained. We
note that we can split this up into components,

~c = uî+ vĵ + wk̂.

We can also relate speed by

c2 = u2 + v2 + w2.

When the molecule travels with speed c, it collides with the walls, but the speed
does not change. Note that momentum is given as mc, so the change in momentum
for one collision is

∆m = 2mc.

The change in momentum for one molecule per unit time is given as

∆m

t
= 2mc

( c
a

)
=

2mc2

a
,

where c/a is speed divided by distance, giving 1/t. Now, we consider N molecules
within the container. The combined change in momentum for all N molecules per
unit time is therefore given as

2m

a

(
c2

1 + c2
2 + ...+ c2

N

)
.

Definition. Mean squared velocity is defined as

c2 =
c2

1 + c2
2 + ...+ c2

N

N
.

Using this, we can rewrite the change in momentum for all molecules per unit
time. Since force is the rate of change of momentum over time, this gives us

F =
2mNc2

a
.

Since pressure is the force divided by the total surface area, we note that the surface
area within the cube of side length a is 6a2, so pressure is

P =
mNc2

3a3
=
mNc2

3v
.

where P is the total pressure, m is the mass of one molecule, N is the total number
of molecules, c2 is the mean squared velocity, and v is the total volume.

Remark. The root mean squared velocity is the square root of the mean squared
velocity.
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We need to check that our equation for pressure is consistent with those found
in experiments. We need one more piece of information, the average kinetic energy
which is given as,

Ek =
1

2
mc2.

Maxwell stated that the kinetic energy Ek is constant at a constant temperature T .
We can now verify against Boyle’s Law. Substituting our expression for pressure
into Boyle’s Law, we find that we need a constant Pv. Our expression becomes

Pv =
mNc2

3
.

Since Ek is constant at a given temperature, this means that for a fixed mass, c2 is
constant. Thus, in the expression for Pv, we note that for a fixed mass of a known
gas, N is a constant as well.

We can also compare against Amagat’s Law, which implies that when P , v, and
T are constant, then n is constant. For two different gasses, let us assume that their
pressures, volumes, and temperatures are constant. Since temperature is constant,
their kinetic energies are the same. But then this means that their masses of the
gas multiplied by their mean squared velocity is constant. Thus, in the expression
for P1v1 = P2v2, this requires that N1 = N2, thus confirming Avogadro’s Law. By
conforming to these physical laws, there is evidence to support the validity of the
theory.

10 February 14, 2017

10.1 Kinetic Energy and Temperature

We can derive the pressure for one mole using the total pressure formula Pv =
1
3mNc

2 by replacing volume v with molar volume Vm and replacing the number of
moles N with Avogadro’s constant NA = 6.022 · 1023mol−1. Thus, the pressure for
one mole is

PVm =
mNAc2

3
.

Similarly, the kinetic energy for one mole is

Ek,m = NA

(
mc2

2

)
.

We can also derive another expression for kinetic energy. Equating the above two
equations, we note that PVm = 2

3Ek,m. Since PVm = RT , then

Ek,m =
3

2
RT.

This is the total kinetic energy of one mole of ideal gas.
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10.2 Speed and Temperature

We note that from before, we know that PVm = RT and PVm = NAmc2

3 . Addition-
ally, mNA = M , where m is the mass, NA is Avogadro’s constant, and M is that

molar mass. Equating all three equations, we find that Mc2

3 = RT , so

c2 =
3RT

M
.

We can also determine the root mean square speed (rms speed), which is√
c2 =

√
3RT

M
.

To simplify formulas, we make use of the Boltzmann Constant

k =
R

NA
= 1.380662 · 10−23 J

K
,

which is given by the gas constant per molecule.
With regards to the distribution of molecular velocities, not all the molecules

in an ideal gas will be going at the same speed. The fraction of molecules at a
given speed c will depend on the temperature. If we plotted a graph of the fraction
of molecules and c, we will find that for T2 > T1, the distribution the fraction of
molecules at T2 will on average have a higher c. The most probable speed occurs
at the peak of this distribution, and is given as

cmp =

√
2RT

M
.

In contrast, the mean (average) speed is

c =
1

N

N∑
i−1

ci =
c1 + c2 + ...+ cN

N
=

√
8RT

πM
.

A simple analysis of the units of the above equations for speed will reveal that we
cannot simply use the regular expression for the gas constant in the formulas. Thus,
for all of the formulas for speeds, we shall use

R = 8314
Pa ·m3

kmol ·K
.

10.3 Heat Capacities

We recall that for one mole of gas, the kinetic energy is

Ek,m =
3RT

2
,
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at a specific temperature T . If we increase the temperature to T + 1, then we have
Ek,m = 3

2R(T +1), so ∆Ek,m = 3R
2 . Specific heat is defined as the energy required

to heat one mole of a substance by 1K. There are two ways to accomplish this.
The first method occurs at a constant volume, where the change in kinetic energy
is equal to the energy added to the gas. There is no work by the gas, so ∆V = 0.
At a constant volume, the specific heat is

CV =
3R

2
.

The second method occurs at a constant pressure. Thus, the change in kinetic energy
is equal to the energy added. The molar volume must change due to the temperature
increase, as PVm = RT . This change in volume introduces a work term P∆V . We
can find this by subtracting PVm = RT from P (Vm + ∆V ) = R(T + 1), which gives
P∆V = R. Therefore, the specific heat at a constant pressure is

CP =
3

2
R+R =

5R

2
.

We note that we can easily obtain CV and CP by adding or subtracting R from each
other

Remark. The specific heat equation can be obtained using CP , since

Q = nCp∆T.

10.4 Collisions Between Molecules

So far, we have only considered collisions with walls. However, molecules can collide
with each other as well. We define the mean free path λ as the average distance
that a molecule travels between two successive collisions with another molecule. The
collision diameter σ is the distance between centers of two colliding molecules at
which the repulsion force between them becomes large enough to cause a reversal
of motion. Note that the distance between the center of two spheres of the same
radius is equal to the diameter of both spheres.

To calculate mean free path, we start by assuming that only one molecule is
moving so that the rest are stationary. Additionally, we assume that molecules
travel in straight lines, and the volume swept by the movement is a cylinder. If the
center of another molecule is within σ from the center of the moving molecule, then
they will collide. The cross sectional circular area that is affected therefore has a
diameter of 2σ, since molecules with centers within this total range will be hit. The
volume of the swept cylinder is therefore πσ2L. The number density ρN is the
number of molecules per unit of volume. The number of collisions for the moving
molecule is therefore πσ2LρN . The mean free path of a single moving molecule can
then be calculated by dividing the total distance travelled by the total number of
collisions,

λ =
L

πσ2LρN
=

1

πσ2ρN
.
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In the event that all of the molecules are moving, then the mean free path is

λ =
1√

2πσ2ρN
.

In the discussion above, we have made use of ρN . To find the number density, we
make use of PVm = RT and the Boltzmann constant k = R

NA
. From equating these

two equations, we obtain

ρN =
NA

Vm
=

P

kT
,

where ρN is the number density in molecules per unit volume, NA is Avogadro’s
constant, Vm is the molar volume, P is the pressure, k is the Boltzmann constant,
and T is the temperature. We can therefore substitute this expression for number
density to find that the man free path is

λ =
kT√

2πσ2P
.

The distance between molecules can also be calculated. The mean distance
between molecules δ can be calculated by first taking the inverse of number
density to find the volume between molecules. The effective volume occupied by the
molecules is given as

δ3 =
1

ρN
=
kT

P
.

Thus, the mean distance between molecules is

δ =
3

√
kT

P
.

Generally, the magnitudes are
σ < δ < λ.

11 February 16, 2017

11.1 Rate of Molecular Collisions With Walls of Container

If we multiply the total number of molecules with the number of collisions per
molecule per unit time, we can divide this by area to obtain the rate of molecu-
lar collisions with the walls of the container. Therefore, the rate of perpendicular
collisions is (

ρNa
3
) (

c
a

)
6a2

=
ρNc

6
.

For real collisions that are not restricted to perpendicular interactions, we use the
formula

ρNc

4
.
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11.2 Transport Properties

We consider the transport of mass through diffusion (diffusivity D), the transport of
heat through conduction (thermal conductivity κ), and the transport of momentum
(viscosity µ). All transport equations have the same form, where flux is equal to
the negative of a coefficient multiplied by a driving force. The driving force is the
gradient, and flux is the transport of something over time and area. It is important
that the area is perpendicular to the direction of the transport. The gradient is
visualized as a triangle from high to low, on the y axis and transport from left to
right. The vertical difference is the reason for movement, where the driving force
can be understood as the hypotenuse of the triangle.

11.3 Transport of Mass (Diffusion)

Diffusion is transport due to the random movement of molecules. Fick’s Law of
Diffusion states that

jA = −DAB

(
dCA
dy

)
,

where jA is flux of A measured in mol
m2s

, DAB is the diffusivity of A in B measured in
m2

s , CA is the concentration in mol
m3 and y is the distance in m. The concentration

and distance are used to calculate the concentration gradient,

dCA
dy
≈ ∆CA

∆y
=
CA2 − CA1

y
,

which is measured in mol
m4 . The triangle drawn consists of distance y on the bottom,

and a triangle with CA1 at the top left and CA2 at the bottom right. Note that
the flux is positive because as distance y increases, flux (a positive number) is from
the high to low concentration. Change in concentration is negative, so this cancels
out the negative in the expression. Molecular diffusion is more prevalent in the gas
phase than in liquids or solids. The diffusivity in the diffusion equation above is

DAB =
λc

2
≈ DAA,

where A and B are similar molecules. This is approximately equal to DAA, which
indicates the diffusivity of a substance in itself. The diffusivity of a substance within
itself can be calculated by substituting the λ and c to obtain

DAA =
RT

PNAπσ2

√
RT

πM

The ratio of two diffusivity values obtained at different temperatures and pressures
can be found, where

D2

D1
=
T

3
2

2

P2
· P1

T
3
2

1

=

(
T2

T1

) 3
2 P1

P2
.
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11.4 Transport of Heat (Conduction)

Conduction is transport of heat due to differences in temperature. The flux is
given by

q = −κ
(

dT

dx

)
,

where q is the flux of heat in J
s·m2 = W

m2 , κ is the thermal conductivity measured in
W
mK , dT

dx is the temperature gradient in K
m . Since

q =
Q

A
,

where Q is the rate of heat transfer measured in J/s and A is the area measured in
m2, Fourier’s Law of Thermal Conductivity states that

Q = −κAdT

dx
.

The temperature and distance are used to calculate the temperature gradient,

dT

dx
≈ ∆T

∆x
=
T2 − T1

x
,

which is measured in K
m . The triangle drawn consists of flux of heat q on the

bottom, and a triangle with T1 at the top left and T2 at the bottom right. For an
ideal gas, when a hot (T1) molecule travels one mean free path (λ), it will hit a
cooler molecule and transfer energy. The heat capacity of one molecule is CV

NA
, while

the rate of molecules crossing a plane is ρN c
4 . Thus, the thermal conductivity in the

conduction equation is

κ =
λρNc

2
· CV
NA

=
CV

NAπσ2

√
RT

πM
.

κ is low for gases, since gases are poor conductors and good insulators.

11.5 Transport of Momentum (Viscosity)

Viscosity is an indication of the resistance of a fluid to deformation. A viscous
fluid is moved with only some effort (energy). Thus, µgas is very low. Consider two
plates A and B with a gas in between, where B is fixed. We need to apply a force
to the top plate A to keep it moving. This creates a velocity gradient between the
two plates. Newton’s Law of Viscosity states that

F

A
= −µ

(
du

dy

)
,
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where F
A is the flux of momentum in kg

m·s2 , µ is the viscosity measured in kg
ms ,

du
dy is

the velocity gradient in m/s
m . Note that the units of µ are kg

ms or Pas. For an ideal
gas, the viscosity in the momentum equation is

µ =
ρNcλm

2
=

M

NAπσ2

√
RT

πM
.

12 February 28, 2017

12.1 Real Gases - Deviation From Ideal Behaviour

Real gases are gases that do not follow ideal behaviour. That is, real gases do not
obey the ideal gas law:

Pv = nRT.

The ideal gas law is suitable only when the pressure P is much less than the critical
pressure PC , and the temperature T is much greater than the critical temperature
TC . Real gas laws apply in many real world engineering calculations, such as in-
volving natural gas and pipelines. For example, if we plotted PVm

RT with P , the ideal
line would be at y = 1.0. Real gases would diverge from this horizontal line as P
increases on the x axis.

Reasons for non ideal behaviour include the diverse shape of molecules (not close
to spherical), the existence of intermolecular forces (ideal gases assume there are no
forces), there is actual volume of molecules (ideal gases assume there is zero volume),
and electrical forces. We generally focus on intermolecular forces and the volume of
molecules. These are more pronounced at high pressures and low temperatures.

Example. Suppose we are given a PV diagram of CO2. Consider the L + V re-
gion. At high temperatures where T >> TC ≈ 800K, the real behaviour is well
approximated by the ideal gas law. For T ≈ 400K at a given volume, the predicted
pressure differs due to the deviation between the real and ideal behaviour at lower
temperatures.

12.2 The Van der Waals Equation of State

This is the first of many equations of state that deal with the real behaviour of
gases. These are all based on experiments, data, and theory regarding the actual
behaviour of gases. Van der Waals picked two primary reasons for the observed
non-ideal behaviour. That is, he took into account that

1. Molecules have a finite size. If molecules have a finite size and they occupy
space, then for one mole of gas, then

P (Vm − b) = RT,
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where P is the pressure, Vm is the volume of the container, and b indicates
that the available volume for movement is reduced (This is the volume taken
up by gases). Experimentally, the value of this is

b = 4NAvm,

where NA is Avogadro’s constant and vm is the volume of one molecule.

2. There are intermolecular forces. In the bulk gas, the net effect of inter-
molecular forces is zero. That is, forces act symmetrically on the molecule.
However, if we are at or near the wall, a molecule has to overcome the attrac-
tive forces of its neighbors in order to hit the wall. This causes a reduction in
the momentum of molecules striking the wall. This loss i n momentum results
in a loss of pressure experienced by the wall. Thus, there is an error in the
pressure of ∆P .

According to these observation, the equation then becomes

(P + ∆P )(Vm − b) = RT,

where ∆P ∝ the number of molecules striking the wall and the number of molecules
attracting other molecules. These are both in terms of molar density, so

∆P ∝ ρ2
m ∝

1

V 2
m

.

Replacing the proportionality with a constant a, The Van der Waals equation of
state becomes (

P +
a

V 2
m

)
(Vm − b) = RT,

where a and b change with different substances. These values can be calculated from
the critical properties (TCandPC). This can be rearranged to solve for pressure and
volume,

P =
RT

Vm − b
− a

V 2
m

,

V 3
m −

(
b+

RT

P

)
V 2
m +

a

P
Vm −

ab

P
= 0.

For the second equation, we note that there could be either one real root or three
real roots. With one root, Vm refers the volume in the single phase region. With
three real roots, the largest Vm is the volume of vapour and the smallest Vm is the
volume for liquid in the two phase region. The middle value is ignored. We recall
that Vm = v

n since molar volume is the total volume divided by the number of moles.
The constants a, b can be obtained from tables. Alternatively, they can be found

from the critical point. For T < TC , there are 3 real roots, for T > TC , there is one
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real root, and for T = TC , there are three real roots with the same value. At the
critical point, Vm = VC . This can be rearranged into Vm − VC = 0. Thus,

(Vm − VC)3 = 0

also as three real root corresponding to the critical volume. Expanded, this becomes

V 3
m − 3VcV

2
m + 3V 2

c Vm − V 3
c = 0.

At the critical point, T = TC and P = PC , so

V 3
m −

(
b+

RTC
PC

)
V 2
m +

a

PC
Vm −

ab

PC
= 0.

Thus, since these must be the same, we compare corresponding terms in these two
equations to solve for a and b. Alternatively, the critical properties can be obtained
given a and b. Below are a summary of useful equations that result

VC = 3b,

PC =
a

27b2
,

TC =
8a

27Rb
,

a =
27R2T 2

C

64PC
,

b =
RTC
8PC

.

The units of b are m3/kmol while the units of a are kPa
(

m3

kmol

)2
. Since critical

pressure PC is usually given in atm, we need to use R = 0.08205atm·m
3

kmol·K . Lastly, the
critical compressibility factor is given by

ZC =
PCVC
RTC

=
3

8
.

That is, if the critical compressibility is near 0.375, then the Van der Waals EOS is
a good approximation.

13 March 2, 2017

13.1 The Van der Waals Equation of State Cont’d

When we have a phase change from vapour to liquid, the pressure remains constant
while V changes. The same holds true at the critical point. At the critical point,
the parrtial derivative of pressure with rerspect to volume is 0, so(

∂P

∂V

)
T

= 0.



Behaviour of Liquids, Gases and Solids 29

However, we also obtain a saddle point, so(
∂2P

∂V 2

)
T

= 0.

Thus, VdW EOS can be related by:(
∂P

∂V

)
T

= − RT

(V − b)2
+

2a

V 3
= 0.

Thus, at the critical temperature and pressure,

− RTC
(VC − b)2

+
2a

V 3
C

= 0.

Applying the second derivative, we have(
∂2P

∂V 2

)
T

=
2RT

(V − b)3
− 6a

V 4
= 0,

so at the critical point,
2RTC

(VC − b)3
− 6a

V 4
C

= 0.

Solving these two equations at the critical point with

PC =
RTC
VC − b

− a

V 2
C

,

we find the exact same expressions for the critical pressure, volume, and temperature
in terms of a and b.

At the critical point, the distance between molecules are very different from gases
at P << PC and T >> TC . Thus,

δ ≈ λ ≈ 2σ

at TC and PC .

13.2 Other Equations of State

These overcome some of the problems with VdW EOS. Two of the more com-
mon EOS are the Peng Robinson and SRK (Soave-Redlich-Kuong) EOS.
These need TC , PC , and the accentricity ω that takes into account the shape of the
molecule. We can define

ω = − log

(
PV
PC

)
− 1,

where PV is the vapour pressure at T = .7TC .
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SRK states that

P +
RT

Vm − b
− aα

(Vm(Vm + b))
,

α =

(
1 + κ

(
1 +

√
T

TC

))2

,

κ = 0.480 + 1.574ω − 0.176ω2.

Peng Robinson states that

P =
RT

Vm − b
− aα

Vm(Vm + b) + b(Vm − b)
,

α =

(
1 + κ

(
1 +

√
T

TC

))2

,

κ = 0.37464 + 1.54226ω − 0.26992ω2.

13.3 Compressibility Factor and Corresponding States

We recall that the compressibility factor is given as

Z =
PVm
RT

.

For an ideal gas, Z = 1.0. Derivation of Z from 1.0 tells us the deviation from ideal
behaviour. in general, Z is a function of T and P . For non-ideal gases, we have

P1v1 = nZ1RT1,

P2v2 = n2RT2.

If we rearrange this, we obtain

v2 = v1
P1

P2

T2

T1

Z2

Z1
.

If we choose the second condition to be “standard” condition such that T0 = 0◦C,
Z0 = 1.0, and P0 = 1atm, then

v0 = v1
P1

P0

T0

T1

1

Z1
,

where v1 is the volume at T1 and P1, and v0 is the volume of gas expressed at
standard conditions.
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13.4 Reduced Conditions

These are dimensionless, reduced conditions. Pr, Tr, an Vr denote the reduced
pressure, the reduced temperature, and the reduced molar volume respectively:

Pr =
P

PC
,

Tr =
T

TC
,

Vr =
V

VC
.

All gases behave in a similar manner at the same reduced conditions. For two gases,
if two of the three reduced properties are equal, then the value of the third property
should be comparable. This is referred to as the Law of Corresponding States.
We generally calculate Vr as a function of the other two parameters. Furthermore,
this function is the same for all gases.

For example, we substitute P = PrPC , T = TrTC , and V = VrVC into

P =
RT

V − b
− a

V 2
.

Since
PCVC
RTC

= ZC =
3

8
,

we find that

Pr =
8Tr

3Vr − 1
− 3

V 2
r

.

We note that there are no a and b parameters, so this is a universal equation.
To find Z, we can use either the Generalized Compressibility Chart or Acentricity

(ω) as the Third Parameter. We note that these two methods along with VdW EOS
are used to determine Vm.

1. Generalized Compressibility Chart is a graphical representation of the
PVT behaviour for all gases. To use this, we first obtain the TC and PC
of a particular gas. We then calculate Tr and Pr from the temperature and
pressure. We then read Z from the chart. Thus,

Vm =
ZRT

P
.

We generally need an additional parameter since charts are often not that
accurate. We use ZC as the third generalization parameter (while Tr and Pr
are the first two parameters) where

ZC =
PCVC
RTC

.
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This ZC ranges from 0.22 < ZC < 0.31. For most gases, 0.26 < ZC < 0.29.
We have a Generalized Compressibility Chart for ZC = 0.27.

2. Acentricity (ω) as Third Parameter is the shape of molecules. ω ≈ 0 for
simple gases. The equation to calculate Z using ω was created by Pitzer and
Curl, and is given as

Z = Z(0)(Tr, Pr) + ωZ(1)(Tr, Pr),

where the values of the functions Z(0) and Z(1) are given in tables. We can
then solve

PVm = ZRT.

14 March 7, 2017

14.1 Real Gas Mixtures

We recall that using the VdW EOS, we could solve for P and Vm using a and b.
For Z, we could use the charts or the tables. For both methods of calculating Z,
we use PVm = ZRT . While these equations work for real gases, we now consider
real gas mixtures. These gas mixtures will have properties different from individual
components. We have the following three methods:

1. Pseudocritical Point Method is associated with Z. Here, we combine the
critical values for the components in the mixture to determine an average TC ,
PC . This represents the mixture as one pseudo-component. In particular, this
is also referred to as Kay’s Method. Here, we calculate the pseudocritical
pressure PPC as

PPC =
∑

yiPcy,

where yi is the mole fraction and Pci is the individual critical pressure. Simi-
larly,

TPC =
∑

yiTci,

where yi is the mole fraction and Tci is the individual critical temperature.
Thus,

Tr =
T

TPC
,

Pr =
P

RPC
,

where T and P are the actual conditions of the gas. Once we have the pseudo-
critical properties, we can find the Z associated through PVm = ZRT through
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the charts. If we are using the Pitzer-Curl Tables, then we identify the value
according to the calculated Pr and Tr to solve the equation

Z = Z0 + ωZ1,

where
ω =

∑
yiωi,

where yi is the mole fraction and ωi is the individual accentricity factor. Then,

Vm =
ZRT

P
.

2. Mixing Rules Method is associated with VdW EOS. We have the a and
b values which are unique for each gas. We have to calculate a and b for the
mix. For mixtures, we have

am =
(∑

yi
√
ai

)2
,

bm =
∑

yibi.

For both of these, we should employ a table to organize the data.

3. Applying Dalton’s and Amagat’s Laws. This is not studied in this course.

15 March 9, 2017

15.1 Volumetric Behaviour of Liquids

We consider PVT relationships. For liquids, we usually keep one variable constant
and look at the other two. Liquids resist compression but are not incompressible.

Pressure has an effect on volume when temperature is constant. Isothermal
compressibility is defined as

βT = − 1

V

(
∂V

∂P

)
T

≈ − 1

V

(
∆V

∆P

)
T

,

where the negative sign is due to volume decreasing when pressure increases. This
is approximated by

βT ≈ −
1

V

(
∆V

∆P

)
T

= −∆V/V

∆P
.

The units of βT are P−1, where P is any unit of pressure. Isothermal compressibility
is the fractional change in volume per unit change in the pressure at a constant
temperature. βT can be determined from a table listing different substances at a
certain temperature. For a certain liquid at a certain temperature, there are usually
two values of BT , one for high pressure and another for low pressure. As temperature
increases, the βT value increases as well.
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Example. Given that βT = 11.32 · 10−101/Pa, determine the fractional volume
change if the pressure changes from 1at to 2atm.

We note that βT = 1.147 · 10−4atm. Thus, since the pressure change is 1atm,
the fractional change in volume is −0.0001147.

Temperature has an effect on volume when pressure is constant. The isobaric
coefficient of volume expansion is given as

αP =
1

V

(
∂V

∂T

)
P

≈
(

∆V/V

∆T

)
P

,

assuming that αP is constant. Here, ∆V = VT − VT0, while ∆T = T − T0. Substi-
tuting into the formula and solving for VT , we obtain

VT = VT0(1 + αP (T − T0)).

In the above expression for VT , we need αP and a reference volume VT0 at a reference
temperature T0. The unit of αP is 1/K.

Temperature has an effect on pressure when volume is constant. The pressure
coefficient is given as

γV =
1

P

(
∂P

∂T

)
V

≈
(

∆P/P

∆T

)
V

,

where pressure rises as temperature rises. The units of γV are 1/K. We can relate
all three coefficients by

γV =
αP
PβT

.

Now, we need to get working equations to be able to obtain V at any temperature
and pressure.

15.2 Thermal Expansion of Liquids

The use of αP is limited to actually calculate V . More often, we use

VT = VT0(1 +Aθ +Bθ2 + Cθ3),

where θ = T − T0. Note that this formula only takes into account temperature. We
need VT0 at T0 and A, B, and C. These values can be obtained from a table, where
the reference volume starts at 0◦C and 1atm. A, B, and C are used to determine
VT at any T at 1atm.

Now, we consider the effect of pressure. Tait’s Equation relates how βT changes
with pressure and is given by

βT =
c

P + d
,
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where c and d are constants. This can be combined with the definition of βT to
obtain

− 1

V

(
∂V

∂P

)
T

=
c

P + d
.

At a constant temperature, we can isolate the terms of volume from the terms of
pressure and integrate both sides,

− ln(V ) = c ln(P + d) + C1.

We can define V0 at P = 0 to be V = V0. The formula then becomes

− ln(V0) = c ln(d) + C1.

Subtracting these two equations, we obtain

− ln

(
V

V0

)
= − ln

(
V0 + ∆V

V0

)
= − ln

(
1 +

∆V

V0

)
≈ −∆V

V0

= −V − V0

V0

=
V0 − V
V0

V0 − V
V0

= c ln

(
P + d

d

)
This is the EOS for liquids at constant temperature. We need V0 at T , along with
c and d to utilize this formula. To obtain c and d, we have β1 and β2 at pressures
of P1 an dP2 respectively at a given T . From the table, we use P1 an dP2 to be the
two different pressures. Thus, we solve the following system

β1 =
c

P1 + d
,

β2 =
c

P2 + d
.

Solving this, we obtain

d =
P1β1 − P2β2

β2 − β1
,

c = β1(P1 + d),

c = β2(P2 + d),
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where c can be obtained from either expression. Since the pressure from the table
is in atm and βT is in units of Pa−1, we need to convert P from table to Pa, or
convert β to units of atm−1.

To calculate V for a liquid X at temperature T and pressure P , we follow the
procedure below:

1. We find VT0 at a low pressure P0 and low temperature T0 using a table. We
correct for T using VT = VT0(1 +Aθ +Bθ2 + Cθ3).

2. We must first obtain c and d at T from P1, P2, β1 and β2 from the table using
the relationships c = β1(P1 + d) and d = P1β1−P2β2

β2−β1 .

3. Now, we find VT at a low pressure P0 and the correct temperature T . We
correct for P using V0−V

V0
= c ln

(
P+d
d

)
.

4. We obtain V at the correct pressure P and correct temperature T .

This method (Tait’s Law) is the first method to obtain the volume of the liquid. The
VdW EOS is the second method to obtain the volume of the liquid, using a guess
from the third method. Specifically, we use Vm = 0.1Vm(ideal). This last method is
from Corresponding States using the Z-chart, where we obtain ZL and ZV (ZV is
on top, while ZL is on the bottom) for the Z value of liquid and vapour when Tr < 1
and Pr < 1 using a table. We then relate PVm = ZRT .

16 March 14, 2017

16.1 Energy Effects in Liquid

Adding energy to liquids can result in two main effects: an increase in temperature
(if P > PV ) or a phase change from liquid to vapour (if P = PV ). These are known
respectively as sensible or specific heat, and latent heat.

Heat capacity Cp is the energy required to raise the temperature of one
kilogram or one mole by one degree Kelvin. This definition is the same for liq-
uids, as it is for gases and vapours. The units are either mass heat capacity
J/(kg · K), or molar heat capacity J/(kmol · K). Typical values for liquids are
between 0.5− 4.0kJ/(kg ·K). Energy is therefore

E = nCp∆T,

E = mCp∆T,

where m is the mass and n is the number of moles.
We can add heat and energy to a liquid at its vapour pressure. Some of the liquid

will convert into vapour while the temperature remains constant. Latent Heat of
Vaporization, denoted by ∆Hv or λ, is the energy that is added. Latent heat is



Behaviour of Liquids, Gases and Solids 37

a function of temperature and pressure. We can consider a PV diagram as the LV
region diminishes as P and T increase to the critical point. Thus, ∆Hv approaches
0 as T approaches TC . An estimate of ∆Hv can be obtained using Trouton’s Rule,
where

∆Hv

Tb
≈ 88

kJ

kmol ·K
,

where Tb is the normal boiling point at 1atm of pressure.
Consider the heating of a liquid to convert it to a vapour. We start with a liquid

below the bubble point and heat until we obtain a vapour above the dew point.
Plotting a Temperature and Energy graph, we note that the temperature increases
until we reach the boiling point temperature. A horizontal line appears in the L+V
region until we are only left with vapour. The temperature of the vapour increases
as more energy is added.

1. In the liquid region, the liquid experiences sensible heat. Thus,

∆E = Cpb(Tb − T0).

2. Latent heat is associated with the region where liquid and vapour exist during
the boiling. In this region,

∆E = ∆Hv.

3. Sensible heat is experienced again when the vapour alone is being heated,

∆E = CpV (T1 − Tb).

Thus, the total energy is

E = Cpb(Tb − T0) + ∆Hv + CpV (T1 − Tb),

expressed per mole or per kilogram. We need to multiply by n or m in moles and
kilograms respectively to get kJ . It is therefore necessary to draw the temperature
profile, since not all problems require all three steps.

16.2 Calculating ∆Hv

We can calculate ∆Hv from T and P and vice versa by applying the Clausius-
Clapegron Equation which relates ∆Hv to the slope of the vapour pressure curve.
That is,

dP

dT
=

∆Hv

T (Vg − Vl)
,

where P is the vapour pressure, T is the boiling temperature, Vg is the specific
volume of vapour, Vl is the specific volume of liquid in equilibrium at T , and ∆Hv

is the latent heat of vaporization. This can be approximated with

∆P

∆T
=

∆Hv

T (Vg − Vl)
,
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where a table may be used to determine the value for ∆Hv. Thus, to obtain ∆Hv

at T2, we use one point above and below this on the table to find that

∆P

∆T
=
P3 − P1

T3 − T1
=

∆Hv

T2(Vg2 − Vl2)
.

Similar equations can be applied to fusion/melting and sublimation/deposition since

dP

dT
=

∆Hf

T (Vl − Vs)
,

dP

dT
=

∆Hs

T (Vg − Vs)
.

16.3 Correlating Vapour Pressure Data to Obtain ∆Hv

We assume the following:

1. Pressure is low, so we can use ideal gas for Vg, so

Vg =
RT

P
.

2. Vg >> Vl if T << TC . Thus,

Vg − Vl ≈ Vg.

Combining these equations with the Clausius-Clapegron equation, we obtain

dP

dT
=

∆Hv

T (Vg − Vl)

=
∆Hv

TVg

=
∆Hv

T RT
P

=
∆Hv

RT 2
P

dP

P
=

∆Hv

RT 2
dT

Integrating both sides and assuming that ∆Hv is constant, we obtain

ln(P ) = −∆Hv

R

1

T
+ C.
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Since we know that P1 is the pressure at T1 and P2 is the pressure at T2, We can
substitute these values into the above equation, and find the difference between the
equations to obtain

ln

(
P1

P2

)
=

∆H

R

(
1

T2
− 1

T1

)
.

We note that this could be used to obtain ∆Hv given two temperatures and pres-
sures, or it could be used to solve for any other variable given the other four. That
is, we can use this equation to obtain the boiling point at any pressure, or the vapour
pressure at any temperature.

Remark. ∆Hv requires units in kiloJoules/kilomole, T requires units in Kelvin, and
R is 8.314 kJ

kmolK in the above equation.
The above equation assumes that ∆Hv is constant. If instead, ∆Hv = A+ BT

assuming a linear relationship, then

dP

dT
=

∆Hv

RT 2
P

=
A+BT

RT 2
P

ln(P ) = − A

RT
+B ln(T ) + C

If the ideal gas assumption for Vg is not valid, then

ln(P ) =
C1

T
+ C2,

where C1 and C2 are obtained from P1, T1, P2, and T2. If T1 and T2 are close
together, then we can assume that

C1 = −∆Hv

R
.
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17.1 Summary

We want to relate the vapour pressure PV to the boiling temperature T using ∆Hv.
We have the following three equations that relate he vapour pressure to temperature:

1. The most accurate method to relate vapour pressure with boiling temperature
is with the following equation,

dP

dT
=

∆Hv

T (Vg − Vl)
.

However, we need Vg and Vl, which are not always given.
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2. We may assume ideal gas to arrive at the second equation. That is, at low
pressures, we can express this as

ln

(
P1

P2

)
=

∆H

R

(
1

T2
− 1

T1

)
.

3. At higher pressures where we cannot assume ideal gas, we use

ln(P ) =
C1

T
+ C2.

We use C1 = −∆Hv
R to estimate ∆Hv.

For the second and third method, we are either given two boiling points, or one
boiling point and latent heat.

17.2 Equilibrium Pressure Above Liquid Mixtures

At a certain temperature, we have a certain mole fraction of the substance in vapour
yi, and a certain mole fraction of the substance in liquid xi. We can relate the liquid
and vapour compositions as

Pi = Cixi,

where Pi is the partial pressure in the vapour, Ci is the constant that changes with
temperature, and xi is the mole fraction that is liquid. Raoult’s law states that
for molecules with similar shapes, the partial pressure in the vapour is

Pi = PVixi = yiP,

where PVi is the vapour pressure at the temperature of the mixture. We note that
for a liquid with C components in equilibrium with a vapour, we have C−1 degrees
of freedom used up. This, F = 1, but T is known, so we have F = 0 degrees of
freedom. Since F = 0, there is a unique point-pressure that depends on T and the
composition of the liquid. The unique pressure is the bubble point pressure of that
mixture at the specific temperature T . We can calculate this pressure.

Suppose we are given the liquid composition in terms of x1, x2, ..., xC at a
particular temperature. We want to find P and yi. We will use Raoult’s law
PVixi = Pyi = Pi along with the fact that

∑
yi = 1. Equating these two ex-

pressions, we obtain

P = PV1x1 + PV2x2 + ...+ PVCxC .

However, this means that we need PV1 and the rest of the vapour pressures at the
temperature of the mixture. We can either use a table or calculate these using
the methods discussed in the previous class. This allows us to use Raoult’s law to
calculate the mole fractions in the vapour yi since we now know P . .
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Suppose we are given the vapour composition at a fixed temperature. We want to
find P and xi. We use Raoult’s law to relate PVixi = Pyi with

∑
xi = 1. Equating

these expressions, we find that

P =

(
y1

PV1
+

y2

PV2
+ ...+

yC
PVC

)−1

.

We need PV1 and the rest of the vapour pressures at the temperature of the mixture.
We can also obtain the liquid composition xi from substituting known values back
into Raoult’s law.

When we do not have similar molecules, we can use a different temperature
dependent constant. Henry’s law states that for molecules with different shapes,
the partial pressure of the gas dissolved in the liquid is

Pi = Hixi.

For binary mixtures, we have compositions x1, x2, y1 and y2. The total pressure
is therefore

P = PV1x1 + PV2x2.

Each PV1 and PV2 is evaluated at T of the mixture. We define the relative volatility
α21 as

α21 =
PV2
PV1

.

Then, we can determine the vapour composition,

y1 =
P1

P
=

PV1x1

PV1x1 + PV2x2
=

x1

x1 +
PV2
PV1

x2

=
x1

x1α21(1− x1)
.

Thus, if we have two components, we can first fix the temperature, then obtain PV1
and PV2 at the specified temperature, where α21 =

PV2
PV1

. We can then pick different

xi values to calculate different yi using the formula above and P using

P = PV1x1 + PV2(1− x1).

This can be used to form a Px diagram where we plot P against x1y1. The vapour
phase would be on the bottom, the LV region would be in the middle, and L would
be on the top. The x1 value would be read on the left of the horizontal, while yi
would be read on the right of the horizontal.

Example. The liquid mixture is composed of 20kg of n-hexane (M = 86), and 80kg
of n-octane (M = 114). For each

Calculate the mole fractions. Determine T3 at a pressure of P3 = 200mmHg.
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The moles of n-hexane is 0.2326kmol, while the moles of n-octane is 0.7018kmol.
Letting n-hexane be the first substance, we have x1 = 0.25, while x2 = 0.75. We
now find

ln

(
P2

P1

)
=

∆Hv

R

(
1

T1
− 1

T2

)
ln

(
351.1

50.3

)
=

∆Hv

R

(
1

323.15
− 1

373.15

)
∆Hv

8.314
= 4686K

∆Hv = 38959
kJ

kmol

Thus, the ∆Hv in terms of n-octane is

∆Hv =
38959kJ/kmol

114kg/kmol
= 341.7

kJ

kg
.

We then apply ln
(
P2
P1

)
= ∆Hv

R

(
1
T1
− 1

T2

)
to find that the temperature T3 = 84◦C.

18 March 21, 2017

18.1 Stress and Strain in Fluids

In mechanical equilibrium, the net force must be zero. A stationary fluid must exert
a force equal in magnitude and opposite in direction to any external force. In the
presence of an external force, the fluid is under normal and shear stress.

Normal stress (σ) is distributed uniformly throughout the fluid and acts in an
outward direction normal (90◦) to all surfaces the fluid is in contact with,

σ = −P,

where P is the pressure given as force F divided by area A. We note that the normal
stress is the negative of the applied pressure. This will result in a change in volume
(∆V ). The fractional change in volume is

∆V

V
.

For a cylindrical piston, where the volume is changed only by varying the height L,
the fractional change in volume is given by

∆L

L
,

where this is the normal strain.
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Shear stress (τ) is the stress that is exerted along the surface of the fluid (not
normal to the fluid). The fluid offers resistance to the deformation (different than
simple compression). Shear stress is transmitted through imaginary layers of the
fluid,

τ =
F

A
.

Shear strain is given as
dx

dy
=

∆x

∆y
,

where ∆x is the horizontal change caused by the force, and ∆y is the vertical
distance from the bottom of the liquid. For an elastic material (like a solid), τ is
proportional to shear strain. In fluids however, the presence of τ results in shear
strain. But when τ is removed, the strain is not removed automatically. That is, it
results in the movement of the fluid. Generally, we only see τ when we movement
in the fluid. Usually, τ is dependent on the rate of strain. Thus,

τ = C
du

dy
,

where u is the velocity in the direction of the applied force, y is in the direction
normal to the applied force, and C is a constant. C can be 0, a constant, or not
constant.

Remark. So far, we have only looked at τ in one direction and x in one direction.
However, strain can be in all three directions, and the same can be said of stress.
With nine components of shear stress and strain, we need tensor calculus to evaluate
this. In this course, we will look at simple equations in one direction each only.

An ideal fluid is an imaginary (hypothetical) fluid for which C = 0 in τ = C du
dy ,

there is no shear strain as a result of external stress. Or, if there was a velocity
gradient, this will not result in stress. These fluids are also known as frictionless,
perfect, or inviscid. The flow pattern is called potential or ideal flow.

A Newtonian fluid occurs when C is a constant but not 0. This becomes

τ = −µdu

dy
,

where C = −µ. We recall that µ is called the viscosity or dynamic viscosity.
The units of µ are Pa · s. Kinematic viscosity is given as

ν =
µ

ρ
,

where µ is the dynamic viscosity and ρ is the density. The units of ν are m2/s. We
note that a change in du

dy will not result in a change in µ, as we instead see a change
in τ . We can now describe the effect of temperature and pressure on viscosity. For
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a gas, as µ increases, T increases. For liquids, as µ decreases, T increases. This is
given by

log10(µ) =
A

T
+B.

The effect of T is much greater than that of P . Generally for liquids, as µ increases,
P increases.

A Non-Newtonian fluid occurs when τ is not directly proportional to du
dy .

Generally, τ is also dependent on time. The apparent viscosity for non-Newtonian
fluids is given as

µAPP = − τ
du
dy

,

where the ratio is not constant. That is, µAPP is a function of the rate of strain.
The formula is the same, but µAPP is not constant. It can change with shear history,
shear rate, and shear stress. We can have multiple types of Non-Newtonian fluids.

18.2 Non-Newtonian Fluids

A thixotropic fluid has a µAPP that decreases over time to reach some final value.
This includes slurries such as Bentonite slurries. A rheopectic fluid is one with
a µAPP that increases over time to reach some final value. This is rare, and only
occurs in some forms of inks. A viscoelastic fluid exhibits “rubber-like” properties,
such as stretching under shear. These have partial elastic recovery when shear is
removed. This includes oils, polymers, and blood.
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19.1 Non-Newtonian Fluids Cont’d

A power-law fluid has shear stress that is only a function of shear rate (not time).
We use the Ostwald-de-Waele model to describe this phenomenon, which states
that

τ = K

(
du

dy

)n
,

where K is the fluid consistency index, and n is the fluid behaviour index. When
n = 1, we have a Newtonian-fluid. Thus, when n 6= 1, we have a Non-Newtonian
fluid. Note that n is dimensionless, but affects the dimensions of K, which are
Pa · sn. Thus, the apparent viscosity is

µAPP =
K
(

du
dy

)n
du
dy

= K

(
du

dy

)n−1

.

When n > 1.0, we have dilatent power-law fluids where µAPP increases with
du
dy . This includes substances such as starch suspensions. When n < 1.0, we have
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pseudoplastic power-law fluids where µAPP decreases with du
dy . To obtain the

values of K and n, we plot the logarithm of both sides,

log(τ) = log(K) + n log

(
du

dy

)
.

It is important to include the units of K after the calculation to determine the value
is obtained.

Another Non-Newtonian fluid is a Bingham Plastic Fluid, which is charac-
terized by its solid-like behaviour at low shear stress. The flow when τ is greater
than some value τ0 can be given as

τ = τ0 − µ0

(
du

dy

)
=⇒ τ ≥ τ0,

du

dy
= 0 =⇒ τ < τ0.

If these are plotted on a graph of τ and du
dy , then the slope of a Newtonian

fluid is constant from the bottom left corner. Dilatent fluids start from the corner
and slope upwards, while pseudoplastic fluids slope downwards from the corner.
Bingham plastic fluids have a y-intercept at τ0 before they rise at a constant slope.

Measurement of Viscosity Viscosity cannot be measured directly, so we mea-
sure shear stress at specific rates of strain. This is done by using viscometers. We
can distinguish the procedure between low and high viscosities:

1. For low viscosities we can use the Capillary Tube Viscometer (Cannon-
Fenske), we measure the pressure drop across a small diameter tube at a fixed
flow rate. This is given by

µ =
π(−∆P )D4

128QL
,

where Q is the flow rate, L is the length, D is the diameter, and ∆P is the
pressure drop.

Alternatively, we may use the Saybolt Viscometer, where the fluid is allowed
to drain through a narrow (capillary) tube. The time for a fixed volume is
measured. This is given by

ν =
µ

ρ
= At− B

t
,

where A and B are constants, t is time, and ν is the kinematic viscosity.

2. For high viscosities, we may use the Spherical Ball Viscometer, where a
sperical steel ball is allowed to fall through a column of fluid. The time over
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a fixed distance is used to calculate the terminal velocity (vt). The viscosity
is given as

µ =
2R2(ρS − ρL)g

9vt
,

where R is the radius of the sphere, ρS is the density of the steel, ρL is the
density of the fluid, and g = 9.81m/s2. We can also use a Fann Viscometer
which is a co-axial concentric cylinder viscometer. The inner cylinder is rotated
at a constant revolutions per minute. This generates a torque on the outer
cylinder through the fluid. The viscosity is given as

µ =
Γ

k0Ω
,

where Γ is the torque, Ω is the angular velocity, and k0 is a constant.

19.2 Flow of Fluids

Different equations govern different types of fluids. For ideal fluids, we have the
following:

• Potential Flow is ideal flow where there are no shear forces. All fluids obey
some of the same rules. Some of these rules include the conservation of mass,
the conservation of momentum, and the conservation of energy. Conservation
of energy may be with regards to potential, kinetic, work, or pressure.

• Bernoulli’s Equations are also used for ideal fluids. The path followed by a
particle or a packet of fluid in ideal flow is call a pathline or a streamline.
These streamlines do not intersect, an no particles travel from one streamline
to another. The fluid starts at a height of h1 and ends at a height of h2.
Similarly defined are the different pressures P1 and P2, velocities u1 and u2,
and densities ρ1 and ρ2. These flow across cross sectional areas of A1 and
A2 at the beginning and end respectively. This imaginary tube is formed by
streamlines under gravity flow. We can therefore perform an energy balance
between the two locations, and perform a mass balance. Thus,

P1

ρ1
+
u2

1

2
+ h1g =

P2

ρ2
+
u2

2

2
+ h2g = C,

where P
ρ is the displacement work term, u2

2 is the kinetic energy term, hg is
the potential energy term, and C is a constant. Since this is ideal flow, there
is no µ in the equation. Thus, we need pressure, density, velocity, and height
at any point to calculate the constant.

For the flow through a variable area duct, we can write a Continuity
Equation (mass balance) to find that

u1A1ρ1 = u2A2ρ2,
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where the units of both sides are in kilograms per second. For a horizontal
duct, h1 = h2, so

P1

ρ1
+
u2

1

2
=
P2

ρ2
+
u2

2

2
.

Thus, equating u2 in both of the equations, we obtain

P1

ρ1
+
u2

1

2
=
P2

ρ2
+
u2

1

2

(
A1ρ1

A2ρ2

)
.

Thus, we rearrange this to obtain

P1 − P2

ρ
=
u2

1

2

(
−1 +

A2
1

A2
2

)
.

The equivalent expression based on u2 is

P1 − P2

ρ
=
u2

2

2

(
1− A2

2

A2
1

)
.

Remark. If P1 and P2 are the same order of magnitude, then ρ1 = ρ2 = ρ for
liquids.

For the flow through a narrow opening where A2 << A1, then using the
above equation, we find that

u2 =
√

2

√
∆P

P
.

For ideal fluid, we can get flow (u2) from ∆P . For real fluids, we also have
friction, so

u2 = C0

√
∆P

P
.

For Hydrostatic Pressure with a column of fluid, we know that A1 = A2

and ρ1 = ρ2 = ρ. Thus, according to the continuity equation, u1 = u2. Thus,
writing the Bernoulli equation, this is expressed as

P1 − P2 = ρg(h2 − h1).
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20.1 Laminar Flow

In fluid mechanics, laminar flow indicates that fluid particles flow along stream-
lines. First, we consider a circular pipe of a constant cross sectional area. We assume
the following:
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• The cross sectional area is constant, so A1 = A2. From the equation of conti-
nuity, U is constant, so there is no acceleration of the fluid.

• The fluid is incompressible, so ρ is a constant.

• The fluid is viscous.

Note that for a nonviscous ideal fluid flowing in a horizontal pipe, we have
U1 = U2, h1 = h2, and P1 = P2. Thus, the net pressure force is (P1 − P2)A = 0.

Viscous fluids on the other hand, exert a resistance to the flow. They exert forces
on any surface. We must apply external forces to keep the fluid in motion with a
speed such that u is constant. We note that there must be a pressure gradient. That
is, (P1 − P2)A will balance the viscous force.

The volumetric flow rate Q depends on the cross sectional area and the velocity
since

Q = A · u,

where u is the velocity.
Consider the force acting on a disk shaped fluid element. The pressure force on

the left of the face is given by

F = P ·A
= P · πr2

On the right side, this is therefore

F = (P + ∆Pπr
2.

The viscous force on the rim of the disk is given by the area multiplied byy the shear
stress, so it is

Ff = 2πr∆L · τ,

where L is the length of the pipe. By equating with the net force in the flow
direction, we obtain

∆P

∆L
=

2τ

r
= 0.

At the wall, r = rw and τ = τw. Comparing the equation with these values substi-
tuted in, we obtain

τ

r
=
τw
rw
.

This tells us that τ varies linearly with r. Thus, when r = 0 at the center, τ = 0.
When we move towards the outside with increasing r, then τ increases linearly.
Substituting this for energy, we have

u =
τw

2rwµ

(
r2
w − r2

)
.
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Thus, u varies linearly with r2. The maximum occurs when r = 0. At the wall, we
have r = rw, so u = 0. Q also depends on r and is given by

Q =
umax

2
πr2

w.

We can practically define an average velocity as

u =
umax

2
.

Referring back to the force balance, we find that

∆P =

(
−32µu

D2

)
∆L.

While we have derived the expressions for a horizontal pipe, these results are also
true for an inclined pipe, where

∆P

L
+ ρg

∆h

L
= −32µu

D2
.

This is known as the Hagen-Poiseville Equation, where L denotes the change in
length ∆L.
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21.1

Reynold’s Number is given by

Re =
Duρ

µ
,

where D is the diameter in m, u is the velocity in m/s, ρ is the density in kg/m3, and
µ is the viscosity in Pa ·s. Laminar flow occurs when Re < 2100, and turbulent flow
occurs when Re > 4500. When Re is between these two values, this is a transition
region, so we use the turbulent equations. We will always use Reynold’s number for
flow questions.

Recall that laminar flow is given by

−
(

∆P

L
+ ρg

∆H

L

)
=

32µu

D2
,

where ∆P = Pout − Pin in Pa, ∆h = hout − hin in m, L is the length in m, u is the
average velocity, and D is the diameter.

To solve flow problem, we first need to draw a diagram depicting the situation
and then label as much as we can. We note that opposing sides of a pump are con-
sidered different locations, as they have different properties. Laminar flow equations
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can be used between any interconnecting pipes. That is, we cannot use it in the
tanks containing the fluid, or at the pump. When considering the pressure differen-
tials across tanks, we assume that the average velocity u is 0 for a sufficiently large
tank. Thus, since u = 0, we manipulate the laminar flow equation to find

−(P2 − P1) = ρg(h2 − h1).

The end of the pipe is open to the atmosphere, so we assume that the pressure there
is 1atm.

21.2 Turbulent Flow in Pipes

The velocity at any radius in the pipe fluctuates. Recall that for laminar flow, we at-
tain a smooth parabolic shape. For turbulent flow, the velocity drastically increases
as we move from the outside to the center. That is, it reaches near maximum veloc-
ity only slightly in from the outside. Additionally, the velocity fluctuates so it looks
jagged. It has a different velocity profile, since

u = umax

(
1− r

rw

) 1
7

,

whereas we recall that the velocity profile for laminar flow was

u− umax

(
1−

(
r

rw

)2
)
.

We also make use a a friction factor that is used in turbulent flow. It is given by

f =
τw(

ρu2/2
) =

2τw
ρu2 ,

where f is the friction factor. Another friction factor that is used is the Darcy
friction factor which is given by

fD = 4f.

We start with our equation for pipe flow,

∆P

L
+ ρg

∆H

L
+

2τw
rw

= 0,

where

τw =
fρu2

2
,

rw =
D

2
.
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Thus, the final equation that we use is

−
(

∆P

L
+ ρg

∆H

L

)
=

2fu2ρ

D
.

By equating the right hand sides of turbulent and laminar flow, we find that the
laminar friction factor is given by

f =
16

Re
.

For turbulent flow, the relationship between f and Re is more complicated. The
pipe roughness also affects f . We will make use of a friction factor chart. Note
that we need average velocity to obtain Re to find f from the chart. If we do not
know the average velocity u, then we will use trial and error. That is, we estimate
f , the calculate u from the turbulent flow equation. We then calculate Re and use
that number to look up f2 from the chart. If f2 6= f , then we repeat with f2.

21.3 Power Consumption

We need to add energy to the liquid to overcome losses. The power for a pump is

Power = Q∆P,

where ∆P is the pressure across the pump, and Q is the volumetric flow rate in
m3/s. We find the power after determining the pressures at its opposing ends by
applying the flow equations.

21.4 Problem Solving

Recall from the continuity equation that ρuA is generally a constant. Some common
problems may be to determine u and flow from the geometry and pressure, or to
determine the pressure or pump power from the geometry and u. If we do not know
u, then we assume that it is turbulent.
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22.1 Review for Final

The lever rule can be applied in two phase regions. In two component systems, we
find the composition of each phase according to going to the left and right until we
hit the lines. Melting/Boiling points correspond to highest point where lines meet
on the left and right in two component systems. The solubility of component 2
in 1 is at the right, while the reverse is true for component 1 in 2. Know how to
interpolate and extrapolate data from tables.
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In liquids, we also consider PVT relationships. We use equations to consider
the effect of T on V , and the effect of P on V . Relating vapour pressure with
temperature, we use

ln(PV ) = −A
T

+ C,

where we relate PV , ∆HV , and T . To determine the pressure above a liquid mixture,
we make use of Raoult’s law since it relates properties in the vapour and liquid phase.

Movement in fluids are described by viscosity. Viscosity provided a means to
classify fluids as ideal, Newtonian, and non-Newtonian. In ideal,, we use Bernoulli’s
equation. In Newtonian fluids, µ is a constant, while non-Newtonian fluids have a
changing µAPP . Non-Newtonian fluids can be distinguished into many types. We
mostly considered power law fluids.

We also considered the flow of fluids, but only for ideal and Newtonian fluids.
For Newtonian fluids, we always have to calculate Reynold’s number before applying
Bernoulli’s equation. We can therefore distinguish into laminar and turbulent flow.,
where eddies occur in turbulent flow. For turbulent flow, we additionally need to
consider the friction factor. It is important to draw and label a diagram for fluid
flow problems. When solving for ∆P or ∆h, solve for the change first, then split
into the final value subtract the initial value. The pump power is

Power = Q(P1 − P0),

where Q is in m3/s.
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